Structure factors for the simplest solvable model of polydisperse colloidal fluids with surface adhesion

نویسندگان

  • Domenico Gazzillo
  • Achille Giacometti
چکیده

Closed analytical expressions for scattering intensity and other global structure factors are derived for a new solvable model of polydisperse sticky hard spheres. The starting point is the exact solution of the “mean spherical approximation” for hard core plus Yukawa potentials, in the limit of infinite amplitude and vanishing range of the attractive tail, with their product remaining constant. The choice of factorizable coupling (stickiness) parameters in the Yukawa term yields a simpler “dyadic structure” in the Fourier transform of the Baxter factor correlation function qij(r), with a remarkable simplification in all structure functions with respect to previous works. The effect of size and stickiness polydispersity is analyzed and numerical results are presented for two particular versions of the model: i) when all polydisperse particles have a single, size-independent, stickiness parameter, and ii) when the stickiness parameters are proportional to the diameters. The existence of two different regimes for the average structure factor, respectively above and below a generalized Boyle temperature which depends on size polydispersity, is recognized and discussed. Because of its analycity and simplicity, the model may be useful in the interpretation of small-angle scattering experimental data for polydisperse colloidal fluids of neutral particles with surface

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase behavior of polydisperse sticky hard spheres: analytical solutions and perturbation theory

We discuss phase coexistence of polydisperse colloidal suspensions in the presence of adhesion forces. The combined effect of polydispersity and Baxter’s sticky-hard-sphere (SHS) potential, describing hard spheres interacting via strong and very short-ranged attractive forces, give rise, within the Percus-Yevick (PY) approximation, to a system of coupled quadratic equations which, in general, c...

متن کامل

A scaling approximation for structure factors in the integral equation theory of polydisperse nonionic colloidal fluids

The integral equation theory of pure liquids, combined with a new ‘‘scaling approximation’’ based on a corresponding states treatment of pair correlation functions, is used to evaluate approximate structure factors for colloidal fluids constituted of uncharged particles with polydispersity in size and energy parameters. Both hard sphere and Lennard-Jones interactions are considered. For polydis...

متن کامل

Corresponding-states approach to small-angle scattering from polydisperse ionic colloidal fluids.

Approximate scattering functions for polydisperse ionic colloidal fluids are obtained by a corresponding-states approach. This assumes that all pair correlation functions g(alpha beta)(r) of a polydisperse fluid are conformal to those of an appropriate monodisperse binary fluid (reference system) and can be generated from them by scaling transformations. The correspondence law extends to ionic ...

متن کامل

Random deposition model with friction: Equivalent to ballistic deposition without lateral growth

The Random Deposition model is the simplest model for surface growth, where there is no correlation between the neighbor sites of the lattice. In the Ballistic deposition model, the particles stick to the first neighbor particle; thus it is used to describe the deposition of the sticky particles. However, in many true-life phenomena involving surface growth, there is no adhesion. Instead, the f...

متن کامل

Polydisperse fluid mixtures of adhesive colloidal particles

We investigate polydispersity effects on the average structure factor of colloidal suspensions of neutral particles with surface adhesion. A sticky hard sphere model alternative to Baxter’s one is considered. The choice of factorizable stickiness parameters in the potential allows a simple analytic solution, within the “mean spherical approximation”, for any number of components and arbitrary s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008